悟空视频

    在线播放云盘网盘BT下载影视图书

    Python与机器学习实战: 决策树、集成学习、支持向量机与神经网络算法详解及编程实现 - 图书

    导演:何宇健
    Python与机器学习这一话题是如此的宽广,仅靠一本书自然不可能涵盖到方方面面,甚至即使出一个系列的书也难能做到这点。单就机器学习而言,其领域就包括但不限于如下:有监督学习(Supervised Learning),无监督学习(Unsupervised Learning)和半监督学习(Semi-Supervised Learning)。而其具体的问题又大致可以分为两类:分类问题(Classification)和回归问题(Regression)。 Python本身带有许多机器学习的第三方库,但《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》在绝大多数情况下只会用到Numpy这个基础的科学计算库来进行算法代码的实现。这样做的目的是希望读者能够从实现的过程中更好地理解机器学习算法的细节,以及了解Numpy的各种应用。...(展开全部)
    Python与机器学习实战: 决策树、集成学习、支持向量机与神经网络算法详解及编程实现
    图书

    Python与机器学习实战: 决策树、集成学习、支持向量机与神经网络算法详解及编程实现 - 图书

    导演:何宇健
    Python与机器学习这一话题是如此的宽广,仅靠一本书自然不可能涵盖到方方面面,甚至即使出一个系列的书也难能做到这点。单就机器学习而言,其领域就包括但不限于如下:有监督学习(Supervised Learning),无监督学习(Unsupervised Learning)和半监督学习(Semi-Supervised Learning)。而其具体的问题又大致可以分为两类:分类问题(Classification)和回归问题(Regression)。 Python本身带有许多机器学习的第三方库,但《Python与机器学习实战:决策树、集成学习、支持向量机与神经网络算法详解及编程实现》在绝大多数情况下只会用到Numpy这个基础的科学计算库来进行算法代码的实现。这样做的目的是希望读者能够从实现的过程中更好地理解机器学习算法的细节,以及了解Numpy的各种应用。...(展开全部)
    Python与机器学习实战: 决策树、集成学习、支持向量机与神经网络算法详解及编程实现
    图书

    神经网络与深度学习 - 图书

    2020计算机·人工智能
    导演:邱锡鹏
    本书主要介绍神经网络与深度学习中的基础知识、主要模型(卷积神经网络、递归神经网络等)以及在计算机视觉、自然语言处理等领域的应用。
    神经网络与深度学习
    搜索《神经网络与深度学习》
    图书

    神经网络与深度学习 - 图书

    2016计算机·人工智能
    导演:吴岸城
    本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。
    神经网络与深度学习
    搜索《神经网络与深度学习》
    图书

    神经网络与深度学习 - 图书

    2016计算机·人工智能
    导演:吴岸城
    本书结合日常生活中的寻常小事,生动形象地阐述了神经网络与深度学习的基本概念、原理和实践,案例丰富,深入浅出。对于正在进入人工智能时代的我们,这些内容无疑可以帮助我们更好地理解人工智能的原理,丰富我们对人类自身的认识,并启发我们对人机智能之争更深一层的思考与探索。
    神经网络与深度学习
    搜索《神经网络与深度学习》
    图书

    深度学习与神经网络 - 图书

    2022计算机·人工智能
    导演:赵眸光
    神经网络与深度学习是人工智能研究的重要领域,是机器学习的重要组成部分。人工智能是研究理解和模拟人类智能、智能行为及其规律的科学。本书紧紧围绕神经网络和深度学习的基础知识体系进行系统的梳理,力求从基础理论、经典模型和前沿应用展开论述,便于读者能够较为全面地掌握深度学习的相关知识。全书共 16 章。第 1 章是绪论,简要介绍人工智能、机器学习、神经网络与深度学习的基本概念及相互关系,并对神经网络的发展历程和产生机理进行阐述;第2章介绍神经网络的基本神经元模型、网络结构、学习方法、学习规则、正则化方法、模型评估方法等基础知识;第3~8章介绍多层感知器神经网络、自组织竞争神经网络、径向基函数神经网络、卷积神经网络、循环神经网络、注意力机制与反馈网络;第9章介绍深度学习网络优化的相关内容;第 10~13章介绍受限玻尔兹曼机和深度置信网络、栈式自编码器、生成对抗网络和图神经网络;第 14 章介绍深度强化学习;第15章介绍深度学习的可解释性;第16章介绍多模态预训练模型。深度学习是源于对含有多个隐藏层的神经网络结构进行的研究,以便建立和模拟人脑的学习过程。本书整理了人工神经网络从简单到复杂的模型,归纳和总结了神经网络的理论、方法和应用实践。本书可以作为高等院校人工智能及相关专业或非计算机专业的参考用书,也可以作为人工智能领域的科技工作者或科研机构工作人员的参考用书。
    深度学习与神经网络
    搜索《深度学习与神经网络》
    图书

    神经网络与深度学习 - 图书

    2020计算机·人工智能
    导演:邱锡鹏
    本书主要介绍神经网络与深度学习中的基础知识、主要模型(卷积神经网络、递归神经网络等)以及在计算机视觉、自然语言处理等领域的应用。
    神经网络与深度学习
    搜索《神经网络与深度学习》
    图书

    神经网络与机器学习(原书第3版) - 图书

    导演:[加拿大]
    神经网络是计算智能和机器学习的重要分支,在诸多领域都取得了很大的成功。在众多神经网络著作中,影响最为广泛的是Simon Haykin的《神经网络原理》(第3版更名为《神经网络与机器学习》)。在本书中,作者结合近年来神经网络和机器学习的最新进展,从理论和实际应用出发,全面、系统地介绍了神经网络的基本模型、方法和技术,并将神经网络和机器学习有机地结合在一起。 本书不但注重对数学分析方法和理论的探讨,而且也非常关注神经网络在模式识别、信号处理以及控制系统等实际工程问题的应用。本书的可读性非常强,作者举重若轻地对神经网络的基本模型和主要学习理论进行了深入探讨和分析,通过大量的试验报告、例题和习题来帮助读者更好地学习神经网络。 本版在前一版的基础上进行了广泛修订,提供了神经网络和机器学习这两个越来越重要的学科的最新分析。 本书特色: 1. 基于随机梯度下降的在...(展开全部)
    神经网络与机器学习(原书第3版)
    搜索《神经网络与机器学习(原书第3版)》
    图书

    Keras深度学习与神经网络 - 图书

    2022计算机·人工智能
    导演:肖睿 程鸣萱
    本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。 本书可作为高等院校计算机等相关专业的教材,也可供人工智能领域的技术人员学习使用,还可以作为人工智能研究人员的参考用书。
    Keras深度学习与神经网络
    搜索《Keras深度学习与神经网络》
    图书

    Python机器学习算法与实战 - 图书

    2021计算机·编程设计
    导演:孙玉林 余本国
    本书基于Python语言,结合实际的数据集,介绍如何使用机器学习与深度学习算法,对数据进行实战分析。本书在内容上循序渐进,先介绍了Python的基础内容,以及如何利用Python中的第三方库对数据进行预处理和探索可视化的相关操作,然后结合实际数据集,分章节介绍了机器学习与深度学习的相关算法应用。本书为读者提供了源程序和使用的数据集,方便读者在阅读时同步运行程序,在增强学习效果的同时为读者节省了编写程序的时间。源程序使用Notebook的形式进行组织,每个小节注释清晰,讲解透彻。同时为程序配备了相应的视频讲解,辅助读者对程序能很好地理解和消化。本书在简明扼要地介绍算法原理的同时,更加注重实战应用和对结果的解读。
    Python机器学习算法与实战
    搜索《Python机器学习算法与实战》
    图书
    加载中...